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| INTRODUCTION

The nonlinear analysis of RC buildings has
been the subject of considerable research
during the last decade [Keshavarzian 1984
and Meyer et al. 1983]. However, recent
experimental research on full-scale and
large-scale buildings [Aktan and Bertero
1984] has indicated that the currently-
used analytical models and, consequently,
the related computer programs, lead to
significant inconsistencies between pre-
dicted and measured responses. The lack of
correlation between the analytical and the
“Per:"ilental results is primarily due to
the inadequacy of realistic idealizations
of the RC element behavior states, e.g.,
2:' '}GﬂBCt‘of the cracking behavior state
St.;dm Pﬂrtlt:lflal_:, the wall elements.
id“i? hﬂe indicated that a proper
B zation of the behavior of RC ele-

S and, consequently, reliable esti-

ma .
d:;:f the stiffness, strength and
fon res Characteristics are prerequisites

’twii.ble nonlinear response analysis.
based onu. models are commonly grouped
Bosect two different concepts with
di'tribuzdhw the nonlinearities are
Broup ig b within the element. The first
Cept apd | "“-"_! on the plastic hinge con-

' dssumes that the nonlinearities

are cq

endg; nﬁ“d.“ two points at the member

o (1 e re commonly modeled as non-

~ Broyp i?;:tioml springs. The second
Concepy . o5€d on the finite regions

.ﬁ $ Which assumes that the nonlinear-

. This paper describes an analytical procedure and presents a computer program
g the static and/or dynamic nonlinear response of RC frame-wall struc-

The stiffness characteristics of reinforced concrete are modeled for three
esenting uncracked, cracked and strain-hardening under flexural and shear
The structure is idealized by line elements representing beams and

and a two-dimensional element representing the structural wall elements. The

of the proposed model and the analytical procedure are demonstrated by compar-
th the experimental and the previous analytical responses of an RC portal frame

ities are distributed along a portion of
the length of the element.

The plastic hinge concept is further
subcategorized as the "One-Component
Model" and the "Two-Component Model." In
the "One-Component Model" [Otani 1972 and
Giberson 1967], the element clear span
consists of an elastic element with one
equivalent nonlinear rotational spring
attached at each end. In the "Two-Compon-
ent Model" [Mahin and Bertero 1975], the
element consists of an elastic component
and an elasto-plastic component which
develops a plastic hinge at either end
when the moment exceeds a specified yield-
ing value. The shear behavior in the
plastic hinge concept 1is modeled much 1n
the same manner as for flexural modeling
by considering plastic shear distortions
of the hinges at the member ends. The
hypothesis of the plastic hinge concept 1s
not capable of adequate representation of
the RC element behavior because the re-
sulting element stiffness matrix 1s
constant in yielding independently of the
severity of yielding due to all of the
inelastic actions being confined to the
rotational hinges. In addition, the "Two~-
Component Model'" does not relate to the
physical behavior of the element.

The finite regions concept overcomes
some of these shortcomings by taking the
finite size of the plastic regions into
consideration. The finite regions concept
is subgrouped as the '"Multiple Spring
Model" and fhe "Finite Plastic Regions
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& “Multiple Spring Mt
B e the element 15

Mode

[Keshavarzian 1984], :
gi:ided into several subelements repre

non-
sented in the form of a sequence of

i d in
linear rotational springs conngctﬁnultiple
series. The disadvantages of the

: S $a
Spring Model"” are in pr§HC1p1e 31T1£ain
those of the "Plastic Hinges Model.

' ' Model"
the "Finite Plastic Regions 581
[Keshavarzian 1984 and Meyer eFd:iédlzo
the element clear span 15 cons:.lastic
consist of two zone types: an €

central zone and two variable*h B of
inelastic zones located ?t e?c E L
element. The shear modeling 1n the

Plastic Regions Concept” is_syc@ Fhat the
inelastic values of shear rigidities

in the inelastic zonées are reduced %n'di-
direct proportion to the flexural rigi

ties. The shortcoming of the ”Finitel .
Plastic Regions Model" 1is thgt the'f ex
ural rigidities of the plastic regions are

evaluated at the element ends and are
assumed to remain constant throughout the

length of the plastic zones and are there-
fore not adequately represented.-Further-
more, none of the models considers the
cracking behavior state.

The proposed model is an improvement on
the "Finite Plastic Regions Model”
[Hashish, 1987]. The improvements include:

1. Incorporation of the third behavior
state for cracking prior to yielding.

2. Evaluation of flexural rigidities of
the inelastic zones based on the moment
and curvatures state at the middle of each
zone.

3. Incorporation of an idealization for
shear rigidity in the cracking and strain-

hardening states.

The primary objective of this paper is
to describe the proposed analytical model.
The analysis procedure and the accuracy of
the model will be demonstrated by compari-
Sons'between the experimental and the
predicted responses for a2 single-bay

one-story frame [Gulkan and
i g o and Sozen 1971 and

2 THE PROPOSED MODEL

In this study, the anal
RC bﬂilding is b
that:

ytical model of a
ased on the assumptions ’

ro
Connected ip paral%el?p =

of line elementsg for stiff-
- however, the
he floor beamg

ked and strain-harden-
ked, crac
as uncrac
ing -
In the prop b oS
VariabIE'Lengt
element chord zon

osed model, termed the "Fjye
ubelement Model," the Rr
e or clear span consistg

: behavior states
4 es ln three $ 3
of five Zoﬁed or elastic, cracked, and
e two strain-hardening

-ked zones are adjacent to each eqg
and cra le zone remains as uncracked

idd :
and ;het?c The representatlon.of behavig,
or elas ypical RC element is shown ip

in a L , : :
g lastic actions, defined in ,

: - '
f;g'ﬁflidealized hysteresis rules, are
S

; e four cracked and straip-
;zigzzzigtzozgs. The Subelgm?nF lengths
and flexural and shear rlgld%tles are
updated after each load or time increment
for the current element stiffness matriy

calculations.

2 1 Subelement lengths

The current subelement lengths are calcy-

lated from the linear bending moment
variation along the element, based on the

current cracked and yielding moment capa-
cities of the cross-section. The cracking
and yielding moment capacities are updated
at each load or time increment by incor-
porating the effect of axial force-moment
interaction with the current axial force.
The current subelement lengths are calcu-
lated from a linear moment variation along
the element, that assuming the total
accumulated length of the inelastic zones
at each end is non-decreasing. The sub-
element lengths are calculated at any time
or load increment, as shown in figure 2.1.

2.2 Flexural rigidity

The flexural rigidity of an RC element is
described by the moment-curvature relation-
ship through a set of idealized hysteresis
rules. The moment-curvature relationship
for an RC element is evaluated based on
the following assumptions:

1. The Bernoulli-Euler assumption of

linear strain distribution along the depth
of a section.

f'zé Hognestad's proposed model as modi-
sie by'Kab? and Mahin (1983) for the
"€88=strain relationship for concrete in
compression (fig.2.2a).
stié'A Proposed model for the stress-
b 10 relationship for concrete in ten-
4n‘£Ha§hinh 1987] (fig.2.2b).
* ‘1 Plecewise linear Stress-strain

relationshi . :
(fig.z.zzl)lfp for reinforcing steel
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aacities of a section are assumed to be
a function of both curvature and axial

force. The effect of the axials force-flex-

| fsecton, P is axial force and F is the
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Figure 2.2 Stress-strain relationship

ments with beam slab T-sections, shear
wall barbell sectioans, and rectangular
sections. The following generalizations
are incorporated 1into the response anﬁly-
sis program based on the results obtained

from the preanalysis: :
1. The cracking moment capacity for a

structural wall section is on the oFder of
45-55% of the yielding moment capacity,
and consequently the cracked behavior
state must be incorporated 1into the analy-
S1S. : :
9 - The cracking and ylelglniimomeqi
acities are assumed to be lineari y
;igportional to the level of axial force

in the element below the balanced point.

3. The contribution of slab w-idth to the

beam flexural rigidity ‘and cracking gnd

L
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e neutra
bE o thickness

position change within the slab

will be small.

The primary
ship obtained
is idealized a
slopes representin

cracked and strain- — :
states. The flexural rigidity of the

uncracked subelement 1is cans?dered Fo be
the first slope in the idealized primary

moment-curvature curve. The flexural
rigidities at the centroid of cracking and
strain-hardening zones are determined from
a set of idealized hysteresis rules. The
flexural rigidity of the centroid section
is assumed to remain constant along the
length of each zone.

The idealized hysteresis rules used in
the analysis are a modification of Takeda-
type (1971) hysteretic moment-curvature
behavmr: The modificatons to the Takeda
hysteresis rules are:

vature relation-

neE-cur
mome sis.prozram

from the preanaly
s a trilinear curve and the

g uncracked or elastic,
hardening behavior

1. The unloading stiffness:

The unloading stiff '
ness 1s consi
by Takeda and others to be in the ;;i'ilenfe{i

_Mc)/(¢max*¢c) b

is the maximum moment ..,
where Hmaﬁ M oy
n

K (Mmax

u

= !.tf-:.-.r-"

are the cracking CUqut

Neg
ir

and ¢ . & ‘ties , {
TS0 SDMEAL cApacities Oh Che “PPOsite ..
of 1oad1ﬂgh - ue

Thus o 18 determlned from Equati{}n (2 :

as fﬂllﬂws:

/K ¢

' g .
B Ku ¢max B o A (EJQ

An upper bound for O is taken as 0 ¢ .
order to prevent excessive degraqap. D

O "
the stiffness. i {

2. Pinching action:

and slippage along cracked surfacesg 1
tween unloading and reloading, is1“3e~
sented by including additiona] flex£?ET
in the hysteresis model (KeshaVarth;llq’
1984) . The additional flexibility ;.
considered to be proportional to the
maximum curvature and the residual cye.
ture attained at the section, apg islwd-

determined as follows:

F, = (¢

where F, is the addi?ional flexibility, 4
and ¢ma are the residual and maxnmmll S
attained curvature, and M 1is either the
cracking or yielding moment curvature
depending on the attained maximum mnéq-
ture. A representation of Pinching actiops
1s illustrated in figure 2.4. ;

+0 )/M_ e

max

2.3 Shear rigidity

Shear rigidity is described separately
for RC prismatic members (beams and
;zimﬁ) am.:l the structural wall elements.
tionpil:'lsmat].(i: members the shear deforma-
iy : §0n31d?red to be secondary to the
e isedor]?atlon’ Whe?e flexural deforma-
s ﬁmlnant. The inelastic shear
Subelemg Or‘crackefl and strain-hardening
Py tnts 18 considered to be propor-
sppivin Otthe flexural rigidities by
havior 8 the elastic theory at each be-

State to the subelement as follows:

GA, =
Ai EIi -Ao/[210(1+ui)] (2.6)
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as the flexural rigidity, consider- deri : ,
;;:n:;e shearing force-shear defonflation eiZ;Zzi ?zn‘;geziciieuﬁzi;?ﬁiqn over Fhe
relatianships for cracked and strain- of each subelement using th 1 1t{ matrix
hardening subelements. .F?r'the uncracked length and flexural andgsh e eva I}at:,ec_l
subelement the shear rigidity is deter- as follows: grefiin. Coponas
gined from the elastic theory similar to
equation 2.6. £ £ ]
The shear force-shear deformation rela- giaif b 12
tionship 18 evaluated for cracked zones £ f (2.8)
based on the aggregate interlock and dowel 12 e |
sction mechanism, while for the strain- where
hardening subelements the relationship is
evallmuated ba;ed on the aggregate interlock 5 'Ly B3 A
nechanism only. The effect of the dowel £, .= ____?1 __2.____1 i
mechanism is not considered in the strain- = i:f GAiL i 3L 'EIi i
h?rdening behavior state because the
SR8 easite ceinforcenent in &
lng is sma 1. The shearing force- fram3n i ———2-1 + ——2———1 O S Y S
z:g:;gfdeformation_relationslglip is 1« i=3 GAiI‘ 3L EI,—_ 2LEL, it
i foro: :hetﬁtraln-hardening subele-
increasing sh::r%on lfmder a‘progresmvely 5% L (% -L)3-(% -1)3
Toment M il tng OrCE‘W].th a constant f22= 2 52" + ———31-2?:—1—__‘_' (2.11)
cracked gubzl 0 I:K, while for the e S i
deformaton reTemE e.sh?ar for':ce-shear _
sectio und-ere atlonshlp-ls de.']E‘:LVEd for a where L. is the length of subelement 1,
’mting ¢ a8 progressively increasing EI. and GAi are current fle:_mral and shear
R orce with a constant moment M riéidities, and A. is the distance between
i e ? tubelement i and the

the right end of
right end of the element and Bi = Rorh.

(2:3) The current local and global elemént1
stiffness matrices are obtained by in-
verting the flexibility matriXx, including

the rigid end effects, if any, incorpo;at-

ing the axial force displacement rela§1on-
ship, and introducing the transformation
matrix for global coordinates following
standard methods of structural analysis.

The structural tangent stiffness matrix of

the entire frame is formulated by;}uyming

all element stiffness matrices at the

are the yielding and
 .of the cross section
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3 ANALYSIS PROCEDURE

The options of the analysis P11"5"‘“‘"-'dure_are
static and/or dynamic response analysis of
the frame-wall structure. The static
analysis provides the response due to
gravity loads and/or quasistatically
applied lateral loads. The gravity load
analysis is performed to determine the
axial force within each element (beam,
column and wall) of the structure before
performing the dynamic or quasi-static
lateral load analysis. From the quasista-
tically applied lateral loads, analysis is
performed to determine the lateral force-
displacement relationships.
lai:.:r:llle gravity*laad analysis, the

and vertical degrees of freedom
are reduced by the statijc condensation
procedure and the €quilibrium equation

will be
M= K* R
(3:1)
In incremental] ]
rotational angd vateral load analysis the

are reduCEd |
will be: nd the €quilibriup Shatin
P = K* x
’ (3.2)
where X' jis the
: condens d i
matrix. ; ed stif
responseThe dYn§m1c dnalysjg iness
and analysis for pha Provides tphe
n /OF 3e13m1¢ gro mﬁnlc 1

- Df
librium eXpresse motiop
Conditjiong exlstingdbzzw he eqyuj

®€n the

- rces, dampl
inertlﬂciz at each floor or framing
ing for tia forces are developed Eom

The ineér ¢s in the structure as cop

: e ma ;
1ng tg at the Varlﬂgs floors or fram

restﬁr__
1&1‘;&1
Sider;
Cen-

ame struc
f’:zlkan and Sozen (1971) and later -,

by Meyer et'al. €1983). Figure 5.1 shoys
the frame dimensions, section Propertjeg
and material properties reported by Mey,,
(1983). The frame 1s-analyzed.for the
following three loading cases:

1. Gravity load.

2. Monotonically increasing quasi-statj,
1ateral load applied at the top.

3. Four complete cycles of quasi-stati
lateral load reversals applied at the top.
The gravity load analysis is performeq

using the cross-sectional properties to
determine the axial force within each
member. The primary moment-curvature
relationship for a member under a constant
axial force, the axial force-cracking
moment, and the axial force yielding
moment interactions are derived for column
and beam cross-sections using the pre-
analysis program (figures 4.2 and 4.3).
The relations obtained for moment-curva-
ture and axial force-cracking moment and
axial force-yielding moment interactions
are utilized to determine the cracking and
yielding moment capacities (for positive
and negative direction if different) and
the uncracked, cracked and strain-harden-
ing slopes of the idealized primary moment-
curvature relation, as well as the rate of
change of cracking and yielding moment
Capacities with the change of axial force
(from the axial force-moment interaction
relations), as shown in Table 4.1. |
Ba§8d on the cross-sectional properti€s
obtained from the pre-analysis program,
the lateral force-displacement for incre-
Tzn?l monotonic and quasistatic CYCllc .
th: :lilg and moment curvature relations 2
€heént ends and middle of strain-
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Table 4.1 Section properties

Beam

S = = S

iﬂ&!ﬂiﬂ“&iﬁgif (}D]Janul

Cracking moment 48.0 34.0
Yielding moment 11.0 93.0
Gravity axial load 2515 =021

Uncracked flexural 5 s
rigidity 1.65x10~ 13.20x10

Cracked flexural L L
rigidity 8.61x10  31.77x10

Strain-hardening 5 5
flexural rigidity 8.61x10° 31.77x10

dMc/aP 0.91 1.31
oMy /oP e By 3.94

B R SER R asree s S TR o
'*All units are Kips, Kip-inch, and Kip-in®
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